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Table 1. AUC ROC values on three different datasets
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Table 2. Contribution of different architecture parts.
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Problem Statement

Increasing interest in smart video
surveillance for public safety and in
urban scenarios

Various terrorist attacks and tragic
accidents during festivals in Europe
But: Bad reputation of video
surveillance systems in society,
especially due to data privacy issues
and misuse

Upcoming interest in identity
agnostic assisting systems for
behavioral analysis from authorities
In particular: anomaleous and
salient behavior recognition

Skeleton-based Anomaly Detection

MPED-RNN [1] and GEPC [2] are the

only existing approaches addressing

skeleton-based anomaly detection

Input:

— Temporal sequence of human
skeletons

Output:

— Saliency or anomaly score

Experiments on two datasets:

— VFP290k [3] (falling people)

— Internal real world dataset
(fighting and aggressive
behavior)
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Two branches generating
representations for salient and non-
salient behavior

Skeleton sequence as a spatio-
temporal graph

Graph Convolutional Layers als
feature extractors

Memory unit for normal behavior
branch
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Instance Dataset Method Frame Instance
0.6673 Normal 0.6216 0.6081
0.6192 VFP290k + Abnormal 0.9259 0.9164
0.5693 + Memory 0.9602 0.9440
0.6167 Normal 0.6826 0.6285
0.9440 Internal + Abnormal 0.7231 0.6830
0.5243 + Memory 0.7213 0.6840
0.5504
0.6840

Base Architecture Conclusion

Increasing interest in data privacy
friendly approaches for behavior
analysis

Certain scenarios described by
public datasets like ShanghaiTech
campus or VFP290k are quite
,simple”

Real-world scenarios like those
captured in our internal dataset are
still very challenging

Getting high quality human skeletal
representations is the key and still
needs special focus when dealing
with video surveillance setups
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